Zip·a·Duct Fabric ventilation ducts

OriFlow™

OriFlow[™] is a directional flow model, where the air exits the duct via rows of laser-cut orifices. Multiple rows of OriFlow[™] can be specified for a duct.

The throw depends on the static pressure inside the duct, the size of the orifices as well as the spacing of said orifices.

OriFlow™ is often used in applications where there is a need for directional air with a medium to high velocity to ensure proper mixing, but with lower requirements for precision. Typical applications include warehouses, distribution centers or industrial applications with higher ceiling.

With OriFlowTM, the air exits at discharge velocity, which decreases with traveled distance from the duct and depends on the static pressure inside the duct. With a properly designed air dispersion system, OriFlowTM is strong enough to ensure heating in medium to high installation projects.

∆T impact on air pattern

Air discharge through OriFlow™ orifice at 120 Pa [0.48 inwg] static pressure.

Example of Typical Application: Heating at 7 m [\approx 23 ft], Δ T of +10 K [+18°F] and 120 Pa [0.48 inwg] static pressure. Hot air reaches the occupied zone, regardless of high Δ T and installation height. The occupied zone is indicated by the black line 1.8 m [\approx 6 ft] above floor level.

Example: Air pattern in cooling with ΔT of -6 K [-10.8°F] and 120 Pa [0.48 inwg] static pressure in a theoretical large space.

Example: Air pattern in heating with ΔT of +6 K [+10.8°F] and 120 Pa [0.48 inwg] static pressure in a theoretical large space.

zipaduct.com

All rights reserved to FabricAir®, 2024. The latest version can be downloaded from zipaduct.com We are not responsible for printing errors.